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High fidelity physics-based simulations demand access to real geometries, fast meshing, 

high accuracy in both space and time with less modelling. In this paper, a flow simulation 

system based on a high order space-time extension of the flux reconstruction method, is 

presented and tested. Arbitrary order of accuracy can be achieved on general hybrid 

unstructured meshes including tetrahedrons, pyramids, prisms and hexahedrons, to support 

complex geometries. Moreover, the efficient space-time extension of flux reconstruction 

method allows local time-stepping for accurate unsteady flow simulations.  This reduces the 

number of functional evalutions compared to uniform time-stepping dramatically especially 

for flow with large-scale, multi-scale geometries. The flow simulation system, HOTNewt, 

combines high order mesh generation and smoothing, high order flux reconstruction 

implementation and its space-time extension to perform large eddy simulations(LES) on 

complex geometries and aims towards high accurate, high efficiency, low memory, and robust 

simulations for industrial level engineering flows. 

Nomenclature 

dt = time step 

F = flux including inviscous part and viscous part of Navier-Stokes eqautions 

i = index of element 

j = index of solution point on the single element 

J                =   Jacobian matrix   

K = order of polynomials 

U = state conservative variable 

𝑥, 𝑦, 𝑧        = coordinate of the physical domain 

𝜉, 𝜂, 𝜁        = coordinate of the computational(local) domain 

𝑟               =    elemenet size ratio for 1D testing 

𝑡               =    physical time of simulation 

𝜏               = non-dimentional time between two steps  

𝑇𝑐             =    flow passing(through typical length scale) time of LES 
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I. Introduction 

omputational Fluid Dynamics(CFD) is widely used in both academia and different industry areas at present to 

understand flow mechanisms and support product design. However, almost all commercially available and in-

house codes are based on algorithms developed more than 20 years ago. These codes are successfully used to solve 

complex geometry problems with the support of turbulence modeling but are generally applied limited to 2nd order  

accuracy. The improvement of simulation-based engineering design process relies on higher fidelity CFD simulations 

with less modelling. With the rapid progress in computational power, a rethink of current CFD algorithms and software 

is required. 

 There are a number of issues for advanced, practical and reliable CFD software to meet future requirements: 

1) Real geometries supported by hybrid unstructured meshes are necessary to handle physical-based simulations 

with real geometries. 

2) Reduced dependence on turbulence modelling: the lack for ability of turbulence modeling to predict many 

flow phenomenas, such as transitional flow and vortex dominated flows, are the main drawback of modern 

production CFD software which solve Reynolds Averaged Navier-Stokes(RANS) equations. High fidelity 

simulations are needed using enable large eddy simulations(LES) and direct numerical simulations(DNS), 

which have more general ability to handle turbulence without modeling.    

3) High resolution for both space and time: LES/DNS requires high resolution by the numerical algorithms for 

both space and time discretisations, which suggest high order methods have strong advantages with better 

ability to correctly represent the whole energy spectrum resolved in LES/DNS. 

4) High computational efficiency: one of the biggest challenge, may be the key problem, is the huge 

computational cost caused by not just by high resolution space discretisation requirements but also high 

accurate time resolution for vortex preservation, which indicate that practical numerical algorithms should 

achieve very high computational efficiency for both space and time discretisations. In this context, 

space(mesh and polynomial) and time adaptation is an effective method to reduce the computational cost. 

5) Efficient usage of many-core computing system: during the last several years, the many-core systems like 

Nvidia GPU, AMD GPU and Intel Xeon PHI co-processors, have developed rapidly and are widely used for 

high performance computing(HPC) applications. They can provide much higher computing ability than 

traditional processors with lower price and less energy consumption. The rapid progress in many-core mobile 

phine chips is another future alternative for its much lower price and power consumption. Future high fidelity 

simulations should make use of these new hardwares/architectures to provide over-night predictions with 

affordable HPC systems.  

6) Low-memory consumption: for LES using high order numerical schemes to resolve large-scale, real 

geometry problems, memory is another bottleneck, maybe as critical as computing power. In particular, the 

available memory on many-core systems is much less than normal processors, hence, more efficient useage 

of the memory is a key issue in heterogeneous computing system.     

7) Supporting wide-range of flow problems: the flow simulation system needs to support low speed flow with 

low mach number preconditioning, subsonic/supersonic/hypersonic flows with shock/physical and moving 

geometries with ALE which are very important for engineering design, off-design running performance, and 

deformations.  

8) Real-time monitoring and fast post-processing: for transient simulations like LES/DNS, the real-time 

monitoring for objective quantities such as mass flow, drag/lift coefficients, skin frinctions, etc, ought to be 

presented in real time for monitoring the simulations. Also parallel data-extracting and post-processing are 

necessary to deal with massive unsteady results generated by LES/DNS. Above all, extracting physical 

unsterstanding from these large simulations and cascading knowledge down to improve lower order 

modelling. 

 

 In practice, all the above issues are interrelated. Overall, we require a useful numerical scheme to achieve high 

order accuracy on hybrid unstructured mesh, with high computational efficiency, robust, low-memory and reliable for 

wide range of flow simulations. The flow solver should be integrated with advanced mesh generation, which can 

produce proper high order curved meshes for real geometries. This paper shows our progress to construct such a flow 

simulation system. 

 This paper is structured as follows. First, the framework of the end-to-end parallel high order simulating system, 

with the high order mesh generation for general hybrid unstructured meshes and smoothing are introduced. Next, the 

basic numerical formulation is reviewed, including high order space and time discretisations with analysis. 

Afterwards, some functionalities including shock-capturing, low mach number preconditioning and wall modelling 
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are introduced. Then, the implementation of this code on many-core system is presented, following by a series of 

numerical simulations are performed and analyzed.  Finally, some conclusions are drawn.   

 

II. End-to-End parallel high order simulating system 

BOXERMesh is commericiallu available mesh generation software developed by Cambridge Flow Solutions 

LTD1, which is fully parallized and scale on distributed memory, highly CAD-tolerant, scripted integration and 

automation for high quality mesh generation of large-scale, complex geometries, Fig.1 shows the application of 

BOXERMesh for different  industrial problems. The main purpose of this work, is to combine this advanced parallel 

meshing system, with the newly developed high order, high efficient STEFR2 solver, and the parallel post-processing 

software ParaView3, to construct an end-to-end parallel high order simulating system for real geometry industrial 

problems, running on different type of modern computing resource including many-core systems.  

 

       
               (a). Turbomachinery                                                                     (b). Marine 

 

   
  (c) Aeronautics                                                                   (d) Automotive 

Figure 1. Application for different industrial fields for BOXERMesh. 

 
 The flowchart of this simulation system is shown in Fig.2. The automatic unsteady simulations and optimizations 

is aided by arbitrary volume refinement(AVR), which is used for routine industrial applications, but is also very 

powerful for flow-feature based remeshing during unsteady simulations as shown in Fig.3~Fig.5, in addition, p-

adaptive refinement is an alternative because arbitrary order of acuuracy can be achieved by using the local 

reconstruction type high order special discretization.  
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 The current high order curved meshing(modification) and smoothing are separate with respect to the  basic mesh 

generation software, which is introduced in section III. In the near future, an integrated high order meshing system 

will be published for large scale, real geometry system, with improved high order geometry description using a  

relatively coarse mesh, to support both high order CFD simulation and general finite element analysis(FEA). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Flowchart of end-to-end parallel high order simulating system 
 

 This paper reviews our previous work, including high order mesh generation(modification)5,6, high orde flux 

reconstruction for hybrid elements2,5,6, space-time extention of FR method(STEFR) for time-accurate local time-

stepping2,7, and introduces some recent research for high order mesh smoothing, conservative STEFR form and in-

cell piecewise solution integration method for shock capturing7, STEFR method using many-core system and adaptive 

wall-modelling, real-time post-processing and monitoring, and trying to combine all these works with adavanced 

meshing software, as an End-to-End parallel high order simulation system to provide high fidelity, high accuracy and 

high efficiency LES for large scale industrial problems with complex geometry.  

 

 

 

 

Hybrid unstructured meshing system 

High order modification and smoothing 

LES by using Space time extension of 

flux reconstruction(STEFR) method 

Monitoring and Post-processing 

BOXERMesh 

High order local reconstruction 

method and staggered node 

displacement smoothing 

Time accurate local time stepping; 

Up to 4th order on hybrid elements; 

Explicit(low-memory); 

Time adaptive; 

Support many-core system; 
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modules cooperated with Paraview. 

  

Data extracting and analysing 
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Figure 3. Unsteady solution-based AVR 

remeshing using BOXERMesh 

 
Figure 4. ISO-surface extracted from transient 

solution and used for AVR refinement in 

BOXERMesh 

 

 
Figure 5. Transient AVR refinement mesh using 

BOXERMesh 

 

 

III.  High order curved mesh generation and smoothing 

 III.A. High order mesh generation(modification) 
 The high order mesh generation is based on the first order meshes(piece-wise linear) generated by BOXERMesh, 

and the high order geometry desctiption is constructed by the local high order reconstruction of first order mesh nodes, 

details can be found in paper 5 and 6. High order nodes on surfaces can be interpolated and projected onto these local 

high order description, and related into volume meshes.  Fig.6 presents the comparisons between first order original 

mesh and its high order modification for the wing mirror acoustic LES with details in section VII.B. 

  
            (a) First order, piecewise linear surface          (b) High order surface 
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     (c) First order surface around the mirror                              (d) High order surface around the mirror 

 

   
       (d) First order surface mesh around the mirror                  (e) High order surface mesh around the mirror 

Figure 6. High mesh representations and compared with first order mesh for the mirror acoustic 

case4, rendered by Gmsh8 
   

III.B. High order mesh smoothing 
 Due to the local reconstructon inside of each cell, the cell quality criterions of high order schemes such as flux 

reconstruction method, Discontinuous Galerkin method, are quite different from the traditional finite volume 

method(FVM) and finite difference method(FDM). Three criterias are adopted in our higher orders meshing system 

as 

1. Jacobian: 

The Jacobian matrix 𝐽 corresponding to the transformation takes the following form 

           𝐽 =
𝜕(𝑥,𝑦,𝑧)

𝜕(𝜉,𝜂,𝜁)
= [

𝑥𝜉 𝑥𝜂 𝑥𝜁

𝑦
𝜉
 𝑦

𝜂
 𝑦

𝜁

𝑧𝜉 𝑧𝜂 𝑧𝜁

]                                                             (1)                                       

Where (𝑥, 𝑦, 𝑧) is physical coorninate and (𝜉, 𝜂, 𝜁) is local coordinate. And the related quality is defined as 

            𝑄𝐽(𝐸𝑖) =
|𝐽|𝑚𝑖𝑛(𝑟𝑖)

|𝐽|𝑚𝑎𝑥(𝑟𝑖)
                                                                     (2) 

 

Where |𝐽|𝑚𝑖𝑛  and |𝐽|𝑚𝑎𝑥  are the minimum and maximum determinate of jacobian matrix over all geometry 

nodes  𝑟𝑖 of element 𝐸_𝑖. In particular, 𝑟𝑖 includes all vomule integral points.  

 

2. Squish 

For all tetrahedrons with straight edges, the quality 𝑄𝐽  keep the maximum value 1 becaue |𝐽| is uniform, 

however, there are still quality requirements for this kind of elements, for which the quality named Squish for 

each side of element is defined as the following form 

                 𝑄𝑆 = 1 − 2
𝑎𝑐𝑜𝑠(

(�⃗⃗⃗�𝑆−�⃗⃗⃗�𝐶)

||�⃗⃗⃗�𝑆−�⃗⃗⃗�𝐶||
⋅�⃗⃗�)

𝜋
                                                           (3) 

where �⃗⃗�𝑆 is the centroid point of face 𝑆 and �⃗⃗�𝐶 is the centroid of the element. 𝑄𝑆 is related to the robustness 

of corrention part of the STEFR which in introduced in detail in section IV, versus the element quality 𝑄𝐽 

related to the divergent part. 



 

 

American Institute of Aeronautics and Astronautics 
 

 

7 

 

3. Orthogonality 

Another constraint for the correction part is the orthogonality which is introduced as 

          𝑄𝑂 = 1 − 2
𝑎𝑐𝑜𝑠(

(�⃗⃗⃗�𝐶−�⃗⃗⃗�𝑆,𝑛)

||�⃗⃗⃗�𝐶−�⃗⃗⃗�𝑆,𝑛||
⋅�⃗⃗�)

𝜋
                                                          (4) 

 

Where �⃗⃗�𝐶  is the centroid of the element and �⃗⃗�𝑆,𝑛 is the centroid of the neighboring element shared side 𝑆. 

 

The aim of high order mesh smoothing is to improve cell qualities through moving geometry nodes under control. 

There are four different node movements modes are adopted in this work as 

1. Laplacian: assume all adjacent nodes construct edges of the mesh with arbitrary geometry node  �⃗⃗�𝑗 are  �⃗⃗�𝑘 , 𝑘 ∈

[3, 𝑁𝑘], the new trial position of �⃗⃗�𝑗 is 

            �⃗⃗�𝑗
′ =

∑ ||�⃗⃗�𝑗−�⃗⃗�𝑘||�⃗⃗�𝑘
𝑁𝑘
𝑘=1

∑ ||�⃗⃗�𝑗−�⃗⃗�𝑘||
𝑁𝑘
𝑘=1

                                                                 (5) 

This method is to average the distance between node �⃗⃗�𝑗 and all adjacent points �⃗⃗�𝑘. 

2. Volume gradient 

          �⃗⃗�𝑗
′ = �⃗⃗�𝑗 + 𝐿 (

𝜕(𝑉𝑜𝑙)𝑚𝑖𝑛

𝜕𝑥
,

𝜕(𝑉𝑜𝑙)𝑚𝑖𝑛

𝜕𝑦
,

𝜕(𝑉𝑜𝑙)𝑚𝑖𝑛

𝜕𝑧
)                                      (6) 

Where 𝐿 is the length scale with the element size, (𝑉𝑜𝑙)𝑚𝑖𝑛 is the smallest volume of elements shared node 

�⃗⃗�𝑗. 

3. Parallel quadrilaterial 

For each quadrilaterial face, assume four vertices are �⃗⃗�1, �⃗⃗�2, �⃗⃗�3 and �⃗⃗�4, each point �⃗⃗�𝑗 can be projected to the 

plane constructed by other three vertices ⊞ (�⃗⃗�𝑘), 𝑘 ≠ 𝑗, 𝑘 ∈ [1,4] and the new position is �⃗⃗�𝑗
′. Only the point 

with smallest movement is chosen to adjust the node position as 

          ||�⃗⃗�𝑗
′ − �⃗⃗�𝑗|| = ||�⃗⃗�𝑘

′ − �⃗⃗�𝑘||
𝑚𝑖𝑛

,     𝑘 ∈ [1,4]                                         (7) 

This mode is aim to improve the coplanarity of quadrilaterial faces, which influence 𝑄𝐽  and the robustness 

especially for pyramids. 

4. Squish gradient 

          �⃗⃗�𝑗
′ = �⃗⃗�𝑗 + 𝐿 (

𝜕(𝑄𝑆)𝑚𝑖𝑛

𝜕𝑥
,

𝜕(𝑄𝑆)𝑚𝑖𝑛

𝜕𝑦
,

𝜕(𝑄𝑆)𝑚𝑖𝑛

𝜕𝑧
)                                         (8) 

Where 𝐿 is the length scale with the element size, (𝑄𝑆)𝑚𝑖𝑛  is the smallest Squish quality value of all elements 

shared point �⃗⃗�𝑗. 

 

Once the trial point �⃗⃗�𝑗
′ is confirmed, the line search process is performed to find the optimal position (�⃗⃗�𝑗

′)
𝑜𝑝𝑡

 

between �⃗⃗�𝑗 and �⃗⃗�𝑗
′, which is supposed to guarantee the monotone quality improvement in some global sense. These 

above four modes are performed in a staggerred way to achieve better efficiency, because each mode has its fatigue 

limitation for this nonlinear smoothing, and the “multigrid-like” procedure is efficient to absorb structure stress 

generated by different modes.   

Tab.1 gives the comparison before and after high order smoothing for the wing mirror acoustic simulation, which 

is introduced in section VII.B, the geometry is a real-size, real-geometry type automotive model from drivaer4. It can 

be found the minimum  𝑄𝐽  is larger than 0.25, which is the greater than experienced threshold for third order 

simulations and the main optimimal direction, and both  𝑄𝑆 and 𝑄𝑂 are controlled to increase monotonically. 

 

Table 1. High order mesh smoothing for the wing mirror acoustic case 

Total 

𝑁𝑐𝑒𝑙𝑙𝑠=3258812 

𝑄𝐽 before 

smoothing 

𝑄𝐽 after  

smoothing 

𝑄𝑆 before 

smoothing 

𝑄𝑆 after  

smoothing 

𝑄𝑂 before 

smoothing 

𝑄𝑂 after  

smoothing 

Minumum 

quality 

0.11235 0.25023 0.04613 0.04613 0.12315 0.16850 

Quality range 𝑁_𝑐𝑒𝑙𝑙𝑠, 

ratio% 

𝑁_𝑐𝑒𝑙𝑙𝑠, 

ratio% 

𝑁_𝑐𝑒𝑙𝑙𝑠, 

ratio% 

𝑁_𝑐𝑒𝑙𝑙𝑠, 

ratio% 

𝑁_𝑐𝑒𝑙𝑙𝑠, 

ratio% 

𝑁_𝑐𝑒𝑙𝑙𝑠, 

ratio% 
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0~0.1 0, 

0.0000000% 

0, 

0.0000000% 

96, 

0.0029459% 

27, 

0.0007870% 

0, 

0.0000000% 

0, 

0.0000000% 

0.1~0.2 17, 

0.0005217% 

0, 

0.0001457% 

1234, 

0.0378666% 

392, 

0.0114265% 

45, 

0.0013809% 

6, 

0.0001841% 

0.2~0.3 167, 

0.0051246% 

2, 

0.0000603% 

6116, 

0.1876758% 

2399, 

0.0699291% 

801, 

0.0245795% 

411, 

0.0126120% 

0.3~0.4 1047, 

0.0321283% 

92, 

0.0027716% 

19109, 

0.5863793% 

25969, 

0.7569773% 

3553, 

0.1090275% 

2939, 

0.0901862% 

0.4~0.5 4205, 

0.1290348% 

28348, 

0.8540244% 

39774, 

1.2205061% 

59591, 

1.7370340% 

11543, 

0.3542088% 

11901, 

0.3651944% 

0.5~0.6 12285, 

0.3769779% 

35257, 

1.0621680% 

82509, 

2.5318736% 

97316, 

2.8366901% 

27959, 

0.8579507% 

28237, 

0.8664814% 

0.6~0.7 34440, 

1.0568268% 

47474, 

1.4302228% 

123939, 

3.8031958% 

181753, 

5.2979667% 

104779, 

3.2152514% 

103213, 

3.1671971% 

0.7~0.8 141835, 

4.3523529% 

151452, 

4.5627102% 

165424, 

5.0762057% 

128534, 

3.7466719% 

174650, 

5.3593150% 

175246, 

5.3776039% 

0.8~0.9 47647, 

1.4620972% 

52412, 

1.5789872% 

178923, 

5.4904364% 

244826, 

7.1364984% 

185195, 

5.6828992% 

185529, 

5.6931483% 

0.9~1.0 3017169, 

92.5849359

% 

3004306, 

90.5090556% 

2641688, 

81.0629150% 

2689811, 

78.4060190% 

2750287, 

84.3953870% 

2751330, 

84.4273926% 

 

 In the near future, the high order curved mesh generation and smoothing will be integrated into our current meshing 

system rather than applied as external modifications, with high order geometry discriptions taken from CAD directly, 

which will significantly improve the geometry fidelity and reduce the cell count, both of which are important key 

issues for industrial class high order large eddy simulations.   

IV.Basic Numerical scheme 

IV.A. Flux Reconstruction Discretisation 
 The flux reconstruction (FR) approach, proposed by Huynh9 for 1D conservative laws, is able to unify the 

mathematics in several high-order methods, including nodal DG methods and the SD methods for at least linear 

problems. Wang and Gao10 extended the idea to simplex meshes by using the “lifting operation” on original DG 

formulation for Euler equations and further for Navier-Stokes equations11, and these works are summarized as the 

Correction Procedure via Reconstruction (CPR) method by Haga, Gao and Wang12. An infinite range of high-order 

energy stable flux reconstruction schemes were developed by Vincent, Castonguay and Jameson13.The FR approach 

is simple, flexible and very efficient for its differential form without any numerical integration, and it has proved its 

higher efficiency than other high order schemes11,14.   

 
  (a). Tetrahedron       (b). Pyramid                             (c). Prism      (d). Hexahedron 

Figure 7. Solution point locations for 3D Elements. K=3 

 

 In order to deal with general unstructured meshes including high order curved cells, all elements are transformed 

from the physical domain (𝑥, 𝑦, 𝑧)to computational(local) domain (𝜉, 𝜂, 𝜁). Following the coordinates transformation, 

define 

�̂� = |𝐽|𝑈 

                𝐹𝜉 = |𝐽|(𝜉
𝑥
𝐹𝑥 + 𝜉

𝑦
𝐹𝑦 + 𝜉

𝑧
𝐹𝑧) 



 

 

American Institute of Aeronautics and Astronautics 
 

 

9 

                𝐹𝜂 = |𝐽|(𝜂
𝑥
𝐹𝑥 + 𝜂

𝑦
𝐹𝑦 + 𝜂

𝑧
𝐹𝑧)                                          (1) 

                𝐹𝜁 = |𝐽|(𝜁
𝑥
𝐹𝑥 + 𝜁

𝑥
𝐹𝑥 + 𝜁

𝑥
𝐹𝑥) 

 (2) 
The governing equation of Navier-Stokes equation in computational(local) domain becomes 

   
𝜕�̂�

𝜕𝑡
+ 𝛻𝜉 ⋅  �⃗�𝜉 =

𝜕�̂�

𝜕𝑡
+

𝜕𝐹𝜉

𝜕𝜉
+

𝜕𝐹𝜂

𝜕𝜂
+

𝜕𝐹𝜁

𝜕𝜁
 =  0                                               (3) 

 Fig.7 gives the solution point locations(𝐾 = 3for different kinds of 3D elements including the tetrahedrons, 

pyramids, prisms and hexahedrons which make up a general, hybrid unstructured meshes. For the 𝑗 −th solution points 

of 𝑖 −th element in a non-overlapped mesh, the uniform FR discretisation for different types of elements are given as 

    
𝜕�̂�𝑖,𝑗

𝜕𝑡
+ (𝛻𝜉 ⋅  �⃗�𝜉(𝑈𝑖))

𝑖,𝑗
+ ∑ ∑ 𝜶𝑗,𝑠,𝑚(�̃�𝜉|𝑛 − �̅�𝜉|𝑛 )𝑖,𝑠,𝑚

𝐾𝑠
𝑚=1

𝑁𝑠
𝑠=1   = 0                             (4) 

 where 𝑁𝑠 is number of sides for the element and 𝐾𝑠 equals number of flux points on the side, �̃�𝜉 , �̃�𝜂 and �̃�𝜁denote 

the common flux which take the form of Riemann fluxes for the inviscid flux and central averaged values for viscous 

part. Particularly, the difference between common flux and the outer normal projection of local flux �̃�𝜉|𝑛 − �̅�𝜉|𝑛, is 

called “correction flux” as the same as 1D FR formulation, which is used to update the DOFs by exchanging 

informations with adjoint elements. The FR coefficients 𝜶 can be obtained through “lift operation”7 for the standard 

element, and the detail operations can be found in11 and12. The Chain-Rule method is adopted to deal with the flux 

divergence because of its consistent order of accuracy and excellent performance to damp aliasing driven  instabilities, 

which is given as 

(𝛻𝜉 ⋅  �⃗̅�𝜉(𝑈𝑖))
𝑖,𝑗

=  
1

|𝐽|𝑖,𝑗
(

𝜕�̅�𝑖,𝑗
𝑥

𝜕𝑥
+

𝜕�̅�𝑖,𝑗
𝑦

𝜕𝑦
+

𝜕�̅�𝑖,𝑗
𝑧

𝜕𝑧
) 

                               =
1

|𝐽|𝑖,𝑗
((

𝜕�̅�𝑥

𝜕𝑈
)

𝑖,𝑗
(

𝜕𝑈

𝜕𝑥
)

𝑖,𝑗
+ (

𝜕�̅�𝑦

𝜕𝑈
)

𝑖,𝑗
(

𝜕𝑈

𝜕𝑦
)

𝑖,𝑗
+ (

𝜕�̅�𝑧

𝜕𝑈
)

𝑖,𝑗
(

𝜕𝑈

𝜕𝑧
)

𝑖,𝑗
)                              (5) 

 

 From Eq.4 it can be found that the FR discretisations consist of two parts: the flux divergence which takes the 

main part and it is completely local; and the linear combination of correction flux which is ought to be minimized. 

Detail discriptions can be found in2. 

 

IV.B. Space time extension 
 For high order method, the explicit multi-stage Runge-Kutta method is most widely used to solve unsteady 

problems16, which is time-accurate, simple, low memory and efficient for massive computations. Another alternative 

method is the implicit Runge-Kutta method10 which can overcome the strict CFL condition of the explicit method by 

using implicit time integration. Besides, the non-linear implicit time-marching method based on interative block 

lower-upper symmetry gauss-seidel(BLU-SGS) method are also adopted to perform LES17,18. However, all these 

methods use a global uniform time-step which is commonly defined by the smallest cell size on the whole mesh, which 

is very inefficient for large-scale simulations especially on multi-scale geometries. Whereas a time-accurate local 

time-stepping method is very attractive to reduce the total number of function evaluations by using the local CFL 

number for each element. For time-dependent ODE(ordinary differential equations), the so-called “space-time” type 

numerical method has great potential to achieve high order time accuracy and provide more flexibility by constructing 

polynomials of solution along time direction. So far, there are two types of space time extension for high order 

methods: one is the global space-time DG method developed by van der vegt and van der Ven19 for inviscid flow, and 

extended for compressible Navier-Stokes equations by Klaij et al20, which results in a set of global nonlinear equations; 

another one is based on “predictor-corrector” method, Gassner et al21 reviewed different types of local predictors for 

DG and finite volume method(FVM), including Cauchy-Kowalevsky precedure, continuous Galerkin predictor and a 

local continuous extension Runge-Kutta(CERK) predictor.  

  In this paper, the “predictor-corrector” space-time extension for high order FR(STEFR) method is introduced, 

which use the “flux divergence” part to construct the local predictor by using continuous Runge-Kutta method22, and 

the “correction flux” part of the FR discretisation is used as corrector. In the original FR formulation, the flux 

divergence takes the major part and is completely local, whereas the linear combination of correction flux part which 

takes adjacent elements into account, is used for updating degree of freedoms(DOFs). The STEFR combines these 

two parts smoothly by the staggered operations which is simple, efficient, accurate for both space discretisation and 

time-marching and allows local time-stepping.  

Rewriting Eq.(4) as the following uniform formula 
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𝜕𝑈𝑖,𝑗

𝜕𝑡
= 𝐑𝑖,𝑗

𝐷 (𝑈𝑖) + ∑ 𝐑𝑖,𝑗,𝑠
𝐶 (𝑈𝑖 , 𝑈𝑖,𝑠

𝑛𝑏)
𝑁𝑠
𝑠=1                                                              (6) 

 where 𝐑𝐷 and  𝐑𝐶 are “flux divergence” part and the linear combination of “correction flux” part, respectively. 

For 1D discretisation, 𝐑𝐷 and  𝐑𝐶 are given as 

       𝐑𝑖,𝑗
𝐷 = −

1

|𝐽|𝑖,𝑗
(

𝜕𝐹 

𝜕𝜉
)

𝑖,𝑗
,              𝐑𝑖,𝑗,𝑠

𝐶 = −
1

|𝐽|𝑖,𝑗
[((�̃�𝑖,𝑠 − �̅�𝑖,𝑠)𝑔𝑠

′ (𝜉𝑗)], 𝑠 = 𝐿 𝑜𝑟 𝑅                     (7) 

 

 and for multi-dimensional discretisations, 𝐑𝐷 and  𝐑𝐶 are given as 

   𝐑𝒊,𝒋
𝐷 = −

1

|𝐽|𝑖,𝑗
(𝛻𝜉 ⋅  �⃗⃗⃗�

𝜉
(𝑈𝑖))

𝑖,𝑗

,          𝐑𝑖,𝑗,𝑠
𝐶 = − 

1

|𝐽|𝑖,𝑗
 ∑ ∑ 𝛼𝑗,𝑠,𝑚(�̃�

𝜉
|𝑛 − �̅�

𝜉
|𝑛 )𝑖,𝑠,𝑚

𝐾𝑠
𝑚=1

𝑁𝑠
𝑠=1                  (8) 

 Integrating Eq.(8) over 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1] ,one obtains 

          𝑈𝑖,𝑗
𝑛+1 − 𝑈𝑖,𝑗

𝑛 = ∫ 𝐑𝑖,𝑗
𝐷 (𝑈𝑖) + ∑ 𝐑𝑖,𝑗,𝑠

𝐶 (𝑈𝑖 , 𝑈𝑖,𝑠
𝑛𝑏)

𝑁𝑠
𝑠=1

𝑡𝑛+1

𝑡𝑛  𝑑𝑡                                    (9) 

 

 Inspired by the space-time extension of DG(STEDG)7, constructing a local space-time approximation 𝑣 =
𝑣(�⃗�𝑖 , 𝑡) for 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1] by solving the following time-dependent ODE 

          
𝑑𝑣𝑖,𝑗

𝑑𝑡
= 𝐑𝑖,𝑗

𝐷 (𝑡, 𝑣(�⃗�𝑖 , 𝑡)),        𝑣(�⃗�𝑖 , 𝑡 = 0) = 𝑈𝑖
𝑛(�⃗�𝑖)                                              (10) 

 From Eq.(7) and Eq.(8), it can be found 𝐑𝐷 is completely local, which indicate the time evolution of  

𝑣 = 𝑣(�⃗�𝑖 , 𝑡) is local also. The continuous Runge-Kutta method11 is adopted to solve Eq.(10) following the  

precedure as 

𝑣𝑖,𝑗(𝜏) = 𝑈𝑖,𝑗
𝑛 + Δ𝑡 ∑ 𝐵𝑙

̇ (𝜏)

𝑁𝑡

𝑙=1

𝐻𝑙
̇   

𝐵𝑙
̇ (𝜏) = ∑ 𝑏𝑙,𝑚

𝑂𝑡

𝑚=1

𝜏𝑚 

𝐻𝑙
̇ = 𝐑𝑖,𝑗

𝐷 (𝑣𝑖
𝑙) 

            𝑣𝑖,𝑗
𝑙 = 𝑈𝑖,𝑗

𝑛 + Δ𝑡 ∑ 𝑎𝑙,𝑛�̇�𝑙−1
𝑙
𝑛=1                                                              (11) 

 

 Where 𝜏 ∈ [0,1] is the non-dimensional time, Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛, 𝑂𝑡 is the order of time integration and 𝑁𝑡 is the 

related number of stages, the coefficients 𝒂 and 𝒃 are given by Owren and Zennaro9. Integrating Eq.(10) for 𝑡 ∈
[𝑡𝑛, 𝑡𝑛+1], one obtains 

            ∫ 𝐑𝑖,𝑗
𝐷 (𝑣𝑖

𝑙)
𝒕𝒏+𝟏

𝒕𝒏 dt = v𝑖,𝑗(𝜏 = 1) − 𝑈𝑖,𝑗
𝑛                                                    (12) 

 Taking the space-time polynomial 𝑣 = 𝑣(�⃗�𝑖 , 𝑡) as a local predictor, and the combination of correction flux 𝐑𝐶 as 

corrector, substituting Eq.(12) into Eq.(9) which results in the space time extension of flux reconstruction(STEFR) 

scheme as  

      𝑈𝑖,𝑗
𝑛+1 = v𝑖,𝑗(𝜏𝑚𝑎𝑥) + Δ𝑡 ∫ ∑ 𝐑𝑖,𝑗,𝑠

𝐶 (𝑣𝑖(𝜏), 𝑣𝑖,𝑠
𝑛𝑏(𝜏𝑛𝑏))𝑑𝜏

𝑁𝑠
𝑠=1

1

0
                                                    (13) 

 where 𝜏𝑛𝑏 indicates the non-dimensional time for adjacent element with the same physical time.  

 For the STEFR method, all elements are allowed to use their maximum allowed local time-step which is adaptive 

during the simulations, this irregular time-stepping bring a lot of challenges for the time integration, physical time 

synchronous especially on parallel computing system. This section focus on application of STEFR and its 

implementation for parallelization. For the convenience of data exchange on element interfaces for time integration 

of correction fluxes, the actual time-steps for all elements are set as the times of power of 2 of the global smallest 

time-step.  

    
   (a). 𝑖𝑖𝑡𝑒𝑟 = 1                          (b). 𝑖𝑖𝑡𝑒𝑟 = 1                            (c). 𝑖𝑖𝑡𝑒𝑟 = 1                            (d). 𝑖𝑖𝑡𝑒𝑟 = 1 
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  (e). 𝑖𝑖𝑡𝑒𝑟 = 41                          (f). 𝑖𝑖𝑡𝑒𝑟 = 51                            (g). 𝑖𝑖𝑡𝑒𝑟 = 61                    (d). 𝑖𝑖𝑡𝑒𝑟 = 176 

Figure 8. Snapshots time marching of one step: horizontal is element index and vertical is normalized 

prediction time. 

 

 

 Fig.8 presents the snapshots of transient prediction time during a global time synchronous step for a 3D simulation, 

for which this is totally 176 iterations. Compared to the uniform step time marching methods, this approach need to 

spend more effort for getting executable queues and asynchronous parallel communications. Therefore, the application 

of STEFR should be minimize the parallel communications. The heterogeneous computing architecture is adopted in 

this work, in which the OpenMP is used for parallel looping inside of each shared memory computing unit, and the 

communications between different computing units are undertaken by MPI. For most simulations on different 

computing systems, the ratio of wall-clock time for effective functional evolutions takes over 70% of computational 

resource for most cases, including the correction flux calculations, predictions and corrections. 

 The efficient implementation of STEFR using local time-stepping is much more complex than other explicit 

methods using uniform time-stepping, such as explicit Runge-Kutta method, especially for parallel simulations. 

However, the application presented in this section has proved very efficient for large scale simulations with speed up 

ratio up to  ~100 compared with using global uniform time-stepping2. 

 

IV.C. Aliasing error analysis and conservative correction for Chain-Rule method 
 As expressed in Eq.(5), the Chain-Rule method is slighlt non-conservative which will not cause actual error for 

subsonic flow simulations, but it is absolutely unacceptable for transonic flow simulations with shock or other kind of 

discontinuities. The natural conservative treatment for the flux divergence part is to use “Lagrange Polynomials”(LP) 

as  

    (𝛻𝜉 ⋅  �⃗̅�𝜉(𝑈𝑖))
𝑖,𝑗

= ∑ (�̅�𝑖,𝑘
𝑥 𝑑𝜙𝑘

𝑑𝑥
(𝜉𝑗) + �̅�𝑖,𝑘

𝑦 𝑑𝜙𝑘

𝑑𝑥
(𝜉𝑗) + �̅�𝑖,𝑘

𝑥 𝑑𝜙𝑘

𝑑𝑥
(𝜉𝑗))

𝑁𝑠𝑝𝑠

𝑘=1                             (14) 

 However, the LP method is less accurate than Chain-Rule method2 and not sufficiently to damp aliasing error in 

some region19. In order to construct a conservative form Chain-Rule method, a source term is introduced6 as 

           𝑆𝑖 =
∫ [(𝛻𝜉⋅ �⃗̅�𝜉(𝑈𝑖))

𝑖,𝑗

𝐿𝑃

−(𝛻𝜉⋅ �⃗̅�𝜉(𝑈𝑖))
𝑖,𝑗

𝐶𝑅

]
𝐸𝑖

𝑑𝐸

𝑉𝑖
                                             (15) 

 

 Where 𝑉𝑖  is the volume of 𝑖 −th element, (𝛻𝜉 ⋅  �⃗̅�𝜉(𝑈𝑖))
𝑖,𝑗

𝐿𝑃

 and (𝛻𝜉 ⋅  �⃗̅�𝜉(𝑈𝑖))
𝑖,𝑗

𝐶𝑅

 are flux divergence 

part calculated by Eq.(5) and Eq.(14) respectively. The source term 𝑆𝑖 is added to each solution point in the 

prediction part(flux divergence part) as a element constant value without any influence for aliasing error 

performance. 

V.Some functionalities 

 V.A. In-cell piecewise integrated solution, additional, novel, method for Shock-Capturing 

 In-cell piecewise integrated solutions are used for shock-capturing in this work, which was originally 

introduced by Peraire  and Huerta23. The basic idea is to construct piecewise constant solutions inside of 

single element, which are conservative and combined with the local high order polynomials at or near the 

physical discontinuities. For FR method, DOFs are stored at nodal-based solution points which inspire 

that the subcells could be around each solution point, Fig.7 shows the solution points and their subcell 
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interfaces(solution point itself if at the end of the element), for each solution point, the related subcell is 

from the left subcell interface to the right subcell interface. The piecewise constant solution is defined as: 

            Ui,j
′ =  

1

𝑉𝑖,𝑗
∫ 𝑈𝑖(𝜉)𝑑𝐸,     𝑗 ∈ [1, 𝐾 + 1]

𝐸𝑖,𝑗
                                          (16) 

        where 𝐸𝑖,𝑗is the subcell related to the 𝑗 −th solution point at 𝑖 −th element, and 𝑉𝑖,𝑗 is the volume of 

subcell 𝐸𝑖,𝑗. The actual approximation can be characterized by 

             𝑈𝑖,𝑗 = (1 − 𝜀)𝑈𝑖,𝑗 + 𝜀𝑈𝑖,𝑗
′                                                             (17) 

        where 𝜀 ∈ [0,1] is a parameter that depends on the smoothness of the solution. The combination 

Eq.(17) is conservative because the piecewise constant solutions 𝑈′come from the piecewise integration 

of high order solutions 𝑈 by Eq.(16). It is very suitable to use the above method to handle discontinuities 

for STEFR with local time-stepping because of its completely local. Other two popular methods for high 

order shock-capturing, limiter and artificial viscosity, are not sufficient for STEFR because of the 

necassary information exchange with adjacent elements, for the former is the neighboring conservative 

variables for constructing limiter, and the artificial viscous fluxes must be included in common fluxes at 

adjancent interfaces for the latter.  

 
(a). K=1 

 
 (b). K=2 

 
(c). K=3 

Figure 9. Solution points(circle) and their subcell interfaces(cross)  
 

        Element-wise constant parameter 𝜀 can vary in space and time depending on the regularity of the 

high order solutions. In order to construct a smoothness indicator, firstly the nodal solutions can be 

transformed to be expressed by some hierarchy, orthogonal and modal polynomials, such as normalized 

Legendre polynomials in 1D, and the related mode is given by 

   𝑈𝑖,𝑗
𝑚  =  ∫ 𝜙𝑗

𝑚 𝑈𝑖(𝜉)𝑑𝜉
1

−1
 , 𝑗 ∈ [1, 𝐾 + 1]                                        (18) 

        where  ϕ𝑗
𝑚 is the modal shape function. For 𝑖 −th element, the following smoothness indicator is 

defined 

                     𝑠𝜅  =  𝐿𝑜𝑔10 (
∑ (𝑈𝑖,𝑗

𝑚)^2
𝑁𝐾
𝑗=𝑁𝐾−1

∑ (𝑈𝑖,𝑗
𝑚)^2

𝑁𝐾
𝑗=1

)                                        (19) 

        For 1D problems, NK = K + 1 is the number of shape functions of order K. Eq.(19) is the proportion 

of high frequency energy in the total energy, which is very small for smooth solutions. In this work, 

parameter ε is given as 

   𝜀 = {

0,   𝑠𝜅 ≤ (𝑠0 − 𝜅)
𝑠𝜅−𝑠0+𝜅

2𝜅
, (𝑠0 − 𝜅) < 𝑠𝜅 < (𝑠0 + 𝜅)

1, 𝑠𝜅 ≥ (𝑠0 + 𝜅)

                                        (20) 

 

        where 𝜅 = 3, 𝑠0 = −7.96𝐿𝑜𝑔10(𝐾). For this case, strict conservative must be ensured because of 

discontinuity, hence, for 1D model cases, the LP method with over-integration is used to calculate the 

flux divergence  part24.  

        The subcell piecewise intergrated solution is constructed to combine with high order approximations 

to handle discontinuity, which can be proved robust, high accurate(subcell shock-capturing) and easy to 

implement for STEFR method. The extension for multi-dimentional elements is to find proper sub-cell for 

each solution point as shown in Fig.9, and project the nodal solutions to some hierarchy of orthogonal 

modal polynomials, later calculate smooth indicator and combine parameter completely the same as 1D 



 

 

American Institute of Aeronautics and Astronautics 
 

 

13 

element, and finally integrate the solution on each selected subcell and combine it with high order 

solution on corresponding solution point to deal with discontinuity. 

 

V.B. Low mach number preconditioning 

     The HLLC Riemann flux is adopted in this work to compute common flux for invicid part, for which a 

quite simple low-speed preconditioning scheme was introduce by Luo24. It is only need to replace the 

Roe’s average variables  𝑣(velocity along outer normal direction) and  �̂�(speed of sound) by 

preconditioned velocity 𝑣′ and speed of sound �̂�′, to calculate the siginal velocities 𝑆𝑖 and 𝑆𝑗, details 

could be found in the paper24. 

  

V.C. Dynamic wall-model 

     Even just for a modest Reynolds number flow past a turbine blade(8.5 × 105), the computation cost for 

boundary layers to achieve wall-resolved LES takes more than 80% for the whole computing time.  

However the cell count near the wall is only about 20% of the whole mesh, which indicate that for high 

Reynolds number flow, most computational resource are cost to resolve neall wall regions because of 

their small size and large aspect ratios even when using this local time stepping high order time-accurate 

solver, section III.B later has an example. Although local timestepping can reduce the computational cost 

dramatically(up to ~100 times2 faster than conventional global uniform time-stepping method), the wall-

resolved LES for large scale industridual problems(whole air plane, F1 car, …) are still too expensive 

using current normal HPC resource. Advanced dynamic wall modelling is a realistic alternative, which 

could speed up the simulation more than 10 times faster without resolving near wall regions. In the 

present work, an improved dynamic non-equilibrium wall-model, which is presented by Park and Moin25 

recently, is adopted in this work, all details could be found in the paper.  

VI. Many-core system implementation 

From the detail description of STEFR method in section IV, the time marching process is very irregular 

compare to conventional global uniform time stepping, and local time step for each element is adaptive for 

every single global synchronous time step, in particular, asynchronous MPI is adopted for communications 

between different computing processes. All these factors makes the STEFR method very hard and 

inefficient to be implemented on GPU system like NVidia CUDA and AMD GPU cards, which require the 

loops in the calculations as uniform as possible. However, the asynchronous MPI + OpenMP inside each 

shared memory process for the STEFR method can be compiled directly and run normally on the intel PHI 

many-core cards.  An workstation was built with 2 ten-core Xeon CPUs with 256GB memory and 8 Xeon 

PHI coprocessor 5110P cards, each card has 8GB memory, 61 physical cores with 1.053GHz frequency. 

The off-load mode code was written with asynchronous communication between PHI card to host CPU and 

PHI card to PHI card, which is viewed as a single “shared memory many-core unit”, and it could be easily 

extended to PHI cluster by using asynchronous MPI for communication between different “shared momory 

units”. The computational ability of this workstation is equivalent to around 140~180 CPU cores of Intel 

Sandy-bridge HPC cluster. Since the computational cost for each element is scale to its geometry size(local 

timestep), the flexible partitions of meshes for this PHI workstation can avoid memory limit on many core 

system, by putting more elements with larger gemometry size on CPU and elements with smaller geometry 

size(especially inside of boundary layers) on PHI card, to match the memory with computational ability. 

The data communications between different computing units including CPUs and MIC(PHI) cards are 

presented in Fig. 10, and this construction can be easily extended to different kinds of heterogeneous 

computing systems for the STEFR method. 

 

 

 

 

 



 

 

American Institute of Aeronautics and Astronautics 
 

 

14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. Communications between different computing units including CPUs and MIC cards. 

VII. Test cases 

 

VII.A. Flow passing a sphere with 𝑹𝒆 = 𝟑𝟎𝟎 and 𝑹𝒆 = 𝟏𝟎𝟎𝟎𝟎 

    The low Reynolds number(Re=300) flow and high Reynolds number(Re=10000) flow around sphere 

are simulated using hybrid unstructured meshes as Fig.11 shown. The slice of velocity magnititude and 

iso-surface of Q criterion for different simulations are given in Fig.12 which indicate that higher order 

simulations have better resolution for vortex region. The drag coefficient Cd and Strouhal number S𝑡 are 

listed in Tab. 2 with comparisons with other calculations and experiments28~32. It can be found the 4th 

order simulations(K=3) for both two different Reynolds numbers are better than lower order simulations 

with less degree of freedoms.    
 

     

CPUs(host) on a “shared memory many-core unit” 

MIC(PHI) card 1 MIC(PHI) card 2 MIC(PHI) card 3 MIC(PHI) card 4, … 
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           (a). Computational domain(Re=300, K=1)                                      (b). Mesh slice(Re=10000, K=3) 

Figure 11. Computational domain and mesh slice for flow passing sphere case 

 

 

    
     (a) Instantaneous velocity magnitude, 𝑅𝑒 = 300                  (b)Average velocity magnitude, 𝑅𝑒 = 300  

    
    (c) Instantaneous velocity magnitude, 𝑅𝑒 = 10000               (d)Average velocity magnitude, 𝑅𝑒 = 10000 

 
(a) Instantaneous Q-criterion, 𝑄 = 5 × 106, 𝑅𝑒 = 300              (b)Average Q-criterion, 𝑄 = 5 × 106, 𝑅𝑒 = 300 

Figure 12. Results for flow passing sphere case, 𝑲 = 𝟑 

 

Table 2. Results of Low-Re/High-Re flow passing a sphere 

Reynolds 

number 

Order of 

accuracy 
𝑁𝑐𝑒𝑙𝑙𝑠   

 

𝑁𝑑𝑜𝑓𝑠 𝐶𝑑 𝑐𝑑 

(calc/expt)28-32 

𝑆𝑡 𝑆𝑡 

(calc/expt) 28-32 

300 SECOND 

(𝐾 = 1) 

419250 13915335 0.676 0.656 

0.657 

0.658 

0.671 

0.130 0.134 

0.136 

0.136 

0.137 

300 THIRD(𝐾 = 2) 155286 15172365 0.664  0.134  

300 FOURTH 

(𝐾 = 3) 

52447 10728620 0.6585  0.136  

10000 SECOND 

(𝐾 = 1) 

378386

3 

135266050 0.448 0.393 

0.438 

0.40±0.01 

 0.195𝑠𝑡1 

0.181𝑆𝑡1 

1.30~1.85𝑆𝑡2 

10000 THIRD(𝐾 = 2) 735883 79212055 0.4387  0.1879𝑆𝑡1 

1.88𝑆𝑡2 

 

10000 FOURTH 

(𝐾 = 3) 

164013 37728290 0.429  0.188𝑆𝑡1 

1.75𝑆𝑡2 

 

 

        Particularly, for this case, all simulations are performed with real time monitoring(drag coefficient) as shown 

in Fig.13 by using the developed python modual and executed in Paraview python shell3.     
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Figure 13. Real time monitoring of the variation for surface integration of drag force, for 𝑹𝒆 = 𝟑𝟎𝟎, 𝑲 = 𝟐 

 

VII.C. Acoustic simulation for a wing mirror of a real size automotive  

       A real size, real geometry type automotive model4, is used for a demonstration wing mirror acoustic simulation, 

with computational domain and mesh slice shown in Fig.14. Due to the large size and very high Reynolds number, 

wall-resolved LES is very expensive, therefore, wall model is adopted to solve near wall region, and third order 

simulations are performed with very limited computational resource(32 CPUs × 8 cores each, or 2 CPUs with 8 

intel-phi cards). In total,  3,258,812 cells are used with arbitrary volume refinement(AVR) at the downstream of the 

mirror and close to the window for accurate simulation of pressure fluctuations in this region. The totol degree of 

freedoms is 411,437,225, around 180 hours are required for 1 flow passing time(flow pass the whole computational 

domain) by using 32 CPUs × 8 cores each. The speed up ratio is aound 26 compared to global uniform time-

stepping, by using the STEFR solver with time-accurate local timestepping. Compared to the wall-resolved 

transonic turbine blade case presented in section VII.B, the computational resource is mostly in volume refinement 

meshes(level 4 in Tab.3) in the mainstream rather than boundary layers due to the wall-modelling. The iso-surface 

of Q-criterion(𝑄 = 80000) is presented in Fig.15. 
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Figure 14. Mesh slice for wing mirror acoustic LES with wall modelling 

 
Figure 15. Instantaneous Q-criterion(𝑸 = 𝟖𝟎𝟎𝟎𝟎) iso-surface colored by velocity magtinitude 

 

Table 3. Statistics of time level for wing-mirror acoustic case, 𝚫𝒕𝒎𝒊𝒏 = 𝟑. 𝟔 × 𝟏𝟎−𝟖𝒔, 𝚫𝒕𝒎𝒂𝒙 = 𝟔. 𝟗 × 𝟏𝟎−𝟔𝒔, 

Speed up ratio ≈ 26.9105 

Level 0 1 2 3 4 5 6 
Δ𝑡

Δ𝑡𝑚𝑎𝑥

 
1

128
 

1

64
 

1

32
 

1

16
 

1

8
 

1

4
 

1

2
 

𝑁𝑐𝑒𝑙𝑙𝑠 165 29993 133676 76394 2799619 171759 107737 

Computing 

cost ratio 

0.046475% 5.967045% 11.69318% 2.7784% 77.0633% 1.6902% 0.7614% 

 

VII.C. Transonic turbine blade case 

   The computational domain for the well-known VKI-LS59 blade is presented in Fig16. The exit Reynolds number 

is 8.5 × 105 with mach number 0.95. In the LES, the length of span is set to about 4.2% of the chord length. This 

is judged to be enough to capture the 3D structure scales, The hybrid unstructured mesh as shown in Fig.16 is 

generated by BoXeR1 with total cells number 440061, where 𝑦+ ≤ 1.5 is enforced for the first boundary layer cells 

for wall-resolved large eddy simulations using the STEFR high order solver.. The flow passing time 𝑇𝑐 ≈ 2 ×
10−4𝑠; all results for statistics and anlysis were taken from the simulation with flow physical time > 10𝑇𝑐. The 

simulations are performed on HPC cluster “Darwin” in University of Cambridge, using 16 nodes with 16cores on 

each node, and each flow passing time need around 16 hours, which demonstrated this STEFR solver is very 

efficient for performing LES on this high Reynolds number flow using very limited computational resource. 

  
(a) Computational domain                                       (b) slice of mesh around trailing edge 

Figure16. Computational domain and mesh slice 
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        The number of time levels are 8(
Δ𝑡𝑚𝑎𝑥

Δ𝑡𝑚𝑖𝑛
= 28) . The rough statistics of time levels is listed in Tab.4 which is 

adaptive for every synchronous time step. It can be seen that the cell number for level 7(Δ𝑡𝑚𝑎𝑥) is about 5 times 

more than level 0(Δ𝑡𝑚𝑖𝑛), however, the computational cost for level 7(Δ𝑡𝑚𝑎𝑥) is only 6.13% of the cost for level 

0(Δ𝑡𝑚𝑖𝑛), which means the local time-stepping “space-time” approach can eliminate many unnecessary functional 

evolutions for unsteady simulation and reduce the total computational cost significantly. The speed up ratio for this 

case is around 8.07 by using local time-stepping compared to traditional global uniform time-stepping. This is a 

quite modest value because of the simple geometry with limited scale range. 

 

Table 4. Statistics of time level for VKILS-59 case 

Level 0 1 2 3 4 5 6 7 
Δ𝑡

Δ𝑡𝑚𝑎𝑥

 
1

128
 

1

64
 

1

32
 

1

16
 

1

8
 

1

4
 

1

2
 

 

1 

𝑁𝑐𝑒𝑙𝑙𝑠 35418 35418 23640 37308 37551 36361 54320 180045 

Computing cost ratio 47.6% 25.3% 9.83% 7.96% 3.65% 1.57% 1.22% 2.92% 

         

        A sequence of instantaneous contours of Mach number for the VKI-LS59 balde is shown in Fig.17. It can be 

clearly seen that a series of shocks within the throat part of the blade interact strongly with the trailing edge vortex 

shedding. The shock structures move both with and against the main flow direction. The reflected shock at the 

suction side boundary layer interaction is nearly perpendicular  the impinging shock, and the shock-boundary layer 

interaction zone is in motion as well. These phenomenon can be clearly seen also in the experimental schlieren 

picture in Fig.18 and Fig.19 22,23. What is striking the crispness with which the present hig accuracy STEFR method 

resolved these physical phenomena and their interactions. An experimental Schlieren picture23 of the vortex street 

behind a similar large scale turbine blade cascade model at transonic outlet Mach number is shown in Fig.19 

displaying similar shock-trailing edge vortex wake interactions. 

 

       
                               (a) 𝑡 = 𝑡0                                                                   (b) 𝑡 = 𝑡0 + 2𝑑𝑡 
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     (c) 𝑡 = 𝑡0 + 4𝑑𝑡                                                             (d) 𝑡 = 𝑡0 + 6𝑑𝑡 

 

            
        (f)  𝑡 = 𝑡0 + 8𝑑𝑡                                                          (g) 𝑡 = 𝑡0 + 10𝑑𝑡                                    
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     (h)  𝑡 = 𝑡0 + 12𝑑𝑡                                                         (i)       𝑡 = 𝑡0 + 14𝑑𝑡 

Figure17. Instantaneous Mach number for VKI-LS59 blade, 𝒅𝒕 = 𝟎. 𝟎𝟐𝟓𝑻𝒄 
                                                                   

   
           Figure 18. Schlieren picture of a rotor blade22.         Figure 19. Schlieren picture behind a large scale turbine blade23 

 

The LES results are spanwise averaged and then time averaged in Fig20. and it can be seen the results match the 

experimental data well in the smooth region but not as well in the shock region especially at the throat part of the 

blade passage with the weak shocks. In order to inverstigate the mismatch, instantaneous spanwise averaged predicted 

isentropic Mach numbers on the blade surface are shown in Fig21. at different time intervals during the periodic cycle. 

It can be seen that the variation of the isentropic Mach number on blade surface is very distinctive with nearly all 

experiment points captured within the envelope. It is not clear how the experimental set-up responds and therefore 

averages the unsteady flowfield. In the case of the simulation it would appear that the time average of a periodically 

moving discontinuity is smooth an unexpected result. Detail analysis can be found in paper 7.  

 

   
Figure 20. Compasion of iso-Mach number between calculation&expriment7.  Figure 21. Envelope of transient iso-Mach7 

 

VIII. Conclusion 

This paper describes the construction of an end-to-end parallel flow simulation system based on the space time 

extension of flux reconstruction method(STEFR), which support hybrid unstructured meshes to handle complex 

geometries. The method demonstrated to be robust, high computational efficiency, low memory, and flexible to solve 

high fidelity, high resolution and time-accurate unsteady flows. A series of numerical validations suggest this flow 

simulation system is able to be developed to provide fast, accurate and reliable simulations for industrial, real geometry 

flow problems, with the integrated advanced high order mesh generation. 

 

Acknowledgments 

This work is supported by Cambridge Flow Solutions Ltd(www.cambridgeflowsolutions.com). 

http://www.cambridgeflowsolutions.com/


 

 

American Institute of Aeronautics and Astronautics 
 

 

21 

References 
1http://www.cambridgeflowsolutions.com 
2Yi Lu, Kai Liu, and W. N. Dawes. Large eddy simulations using high order flux reconstruction method on hybrid un- 

structuredmeshes. InAIAAScienceandTechnologyForum and Exposition(SciTech2014), AIAA2014-0424, 2014. 
3http://www.paraview.org/ 
4http://www.aer.mw.tum.de/en/research-groups/automotive/drivaer/ 
5Y.Lu. “Local Reconstruction High Order Method and Experimental Research for Internal Flow of Turbomachinery”. phD 

thesis, Tsinghua University, China.  
6Y.Lu, W. N. Dawes, and X. Yuan. “Investigation of 3D internal flow using new flux-reconstruction high order method”. In 

Proceedings of ASME Turbo Expo 2012: Power for Land, Sea and Air”, GT2012-69270, 2012.  
7Y.Lu, W.N.Dawes, “High order Large Eddy Simulations for a transonic turbine blade using hybrid unstructured meshes”, 

ASME Paper, GT2015-42283, submitted. 
8http://geuz.org/gmsh/ 
9 Huynh, H. T. “A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods”, 18th AIAA 

Computational Fluid Dynamics Conference, 2007, AIAA 2007-4079 
10Z. J. Wang and Haiyang Gao, “A unifying lifting col- location penalty formulation including the discontinuous Galerkin, 

spectral volume/difference methods for conser- vation laws on mixed grids,” Journal of Computational Physics, Vol. 228, No. 21, 

2009, pp. 8161, 8186.  
11Haiyang Gao and Z. J. Wang. “A high-order lifting collo- cation penalty formulation for the Navier-Stokes equations on 2d 

mixed grids”. In 19th AIAA Computational Fluid Dynamics, AIAA 2009-3784, 2009. 
12T. Haga, H. Gao and Z. J. Wang . “A high-order unifying discontinuous formulation for the navier-stokes equations on 3d 

mixed grids”. Mathematical Modelling of Natural Phenomena , Vol. 6, No. 21, 2011, pp. 28, 56.  
13P.Vincent, P. Castonguay, and A.Jameson. “A new class of high-order energy stable flux reconstruction schemes”. Journal 

of Scientific Computing, Vol.47, No. 1, 2010, pp. 50,72. 
14C. Liang, C. Cox, and M. Plesniak. “A comparison of computational efficiencies of spectraldiffer- ence method and correction 

procedure via reconstruction”. Journal of Computational Physics, Vol.239, , 2013, pp. 244, 261.  
15J. S. Hesthaven and T. Warburton. Nodal Discontinuous Galerkin Methods: Algorithms,Analysis,andApplications. Springer, 

Berlin, 2007.  
16B. Cockburn and C. W. Shu. “TVB Runge-Kutta local projection discontinuous Galerkin finite element method for 

conservation laws II: General framework”. Mathematics of Computation, Vol.52, 1989, pp.411,435. 
17M. Parsani, G. Ghorbaniasl, C. Lacor, and E. Turkel. “Implicit solution of the unsteady euler equations for high- order accurate 

discontinuous galerkin discretisations”. Journal of Computational Physics, Vol.225, 2007, pp. 1994, 2015. 
18M. Parsani, G. Ghorbaniasl, C. Lacor, and E. Turkel. “An implicit high-order spectral difference approach for large eddy 

simulation”. Journal of Computational Physics, Vol. 229, 2010, pp.5373–5393. 
19J.J. van der Vegt and H van der Ven. “Space time discontinuous galerkin finite element method with dynamic grid motion 

for inviscid compressible flows, i. general formulation”. Journal of Computational Physics, Vol.182, 2002, pp.546, 585.  
20C.M Klaij, J.J.W. van der Vegt, and H van der Ven. “Space time discontinuous galerkin method for the compressible navier-

stokesequations”. Journal of Computational Physics, Vol.217, 2006, pp. 589, 611.  
21G. Gassner, M. Dumnser, F. Hindenlang, and C.D Munz. Explicit one-step time discretization for discontinuous galerkin and 

finite volume schemes based on local predic- tors. Journal of Computational Physics, Vol.230, 2011, pp. 4232, 4247. 
22B. Owren and M Zennaro. Derivative of efficient continuous explicit runge-kutta methods. Journal of Science Computing, 

Vol 239, 2013, pp.138, 146. 
23J. Peraire A. Huerta, E. Casoni. A simple shock-capturing technique for high-order discontinuous galerkin methods. 

International Journal for Numerical Methods in Fluids, Vol. 69, 2012, pp. 1614, 1632.  
24Y. Lu, K. Liu, and W.N.Dawes. “Non-linearstability analysis for high order flux reconstruction method”. International 

Journal of Computational Fluid Dynamics, Submitted. 
25H.Luo, J.D.Baum and R.Lohner, Extension of Harten-Lax-van Leer Scheme for Flows at All Speeds. AIAA Journal, 

Vol. 43, No. 6, June 2005 
26G.L.Park and P.Moin, An improved dynamic non-equilibrium wall-model for large eddy simulation. Physical of 

Fluids, Vol 26, 2014. 
27G.S.Constantinescu, M.C.Chapelet, and K.D.Squires, Prediction of Turbulent Flow over a Sphere, AIAA Journal, 41, 

1733-1742 (2003).  
28J.Kim, D. Kim, and H. Choi, An Immersed-Boundary Finite-Volume Method for Simulations of Flow in Complex 

Geometries, Journal of Computational Physics, 171, 132 150 (2001).  
29M.Giacobello, Wake structure of a transversely rotating sphere at moderate Reynolds numbers, Ph.D. thesis, The 

University of Melbourne, Department of Mechanical Engineering, September 2005.  
30A.G.Tomboulides, , S.A. Orszag and G.E. Karniadakis, Direct and Large eddy simulations of axisymmetric wakes, 

AIAA paper number 93-0546, 1993.  
31S.E.Kim, Large Eddy Simulation Using Unstructured Meshes and Dynamic Subgrid-Scale Turbulence Models, 

34th AIAA Fluid Dynamics Conference and Exhibit, Portland, Oregon, AIAA paper number 2004-2548, 2004.    

http://journals.cambridge.org/action/displayJournal?jid=MNP


 

 

American Institute of Aeronautics and Astronautics 
 

 

22 

32E.Achenbach, Vortex shedding from spheres, J. Fluid Mech., 62, pp. 209-221, 1974. 
33N.C. Baines, C.H.Sieverding, R. Kiock and F.Kehthaus. The transonic flow through a plane turbine cascade as 

measured in four European wind tunnels. Journal of Engineering for Gas Turbine and Power, Vol 108, 1986, pp. 277, 284. 
34J.Heinemann, O. Lawczeck. Von Karman vortex street in the wake of subsonic and transonic cascades. In AGARD 

conference proceedings N.177 on “Unsteady Phenomena in Turbumahinery”, AGARD CP177 
35C.H.Sieverding, G. Cicatelli. A review of the research on unsteady turbine blade wake characteristics. In AGARD 

PEP 85th Symposium on “Loss Mechanisms and Unsteady Flows in Turbomachinery”, AGARD CP571 


